Composition of Reed-Solomon codes and geometric designs

نویسندگان

  • Ron M. Roth
  • Abraham Lempel
چکیده

It is shown that good linear [n, k, d] codes over a finite field GF(q) can be constructed by concatenating the generator matrices of Reed-Solomon codes. For the first interesting case of k = 3, it is shown that many of the codes obtained via projective geometry techniques can readily be obtained via the proposed algebraic approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general construction of Reed-Solomon codes based on generalized discrete Fourier transform

In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes  enjoy nice algebraic properties just as the classic one.

متن کامل

Minimum Weight and Dimension Formulas for Some Geometric Codes

The geometric codes are the duals of the codes defined by the designs associated with finite geometries. The latter are generalized Reed-Muller codes, but the geometric codes are, in general, not. We obtain values for the minimum weight of these codes in the binary case, using geometric constructions in the associated geometries, and the BCH bound from coding theory. Using Hamada’s formula, we ...

متن کامل

Minimum weight for some binary geometric codes

The geometric codes are the orthogonals of the codes defined by the designs associated with finite geometries. The latter are generalized Reed-Muller codes, but the geometric codes are, in general, not. We obtain values for the minimum weight of these codes in the binary case, using geometric constructions in the associated geometries, and the BCH bound from coding theory. Using Hamada’s formul...

متن کامل

Subspace Designs Based on Algebraic Function Fields

Subspace designs are a (large) collection of high-dimensional subspaces {Hi} of Fq such that for any low-dimensional subspace W , only a small number of subspaces from the collection have non-trivial intersection with W ; more precisely, the sum of dimensions of W ∩Hi is at most some parameter L. The notion was put forth by Guruswami and Xing (STOC’13) with applications to list decoding variant...

متن کامل

A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes

This paper presents an algorithmic improvement to Sudan’s list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman. Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1988